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Abstract: In this paper, a system of n singularly perturbed robin type initial value
problems with discontinuous source terms is considered. The derivative component of
each equation in the system is multiplied by a same singular perturbation parameter e. A
piecewise uniform Shishkin mesh is constructed and used, in conjunction with a classical
finite difference scheme to form a numerical method for solving this problem. It is proved
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the singular perturbation parameter. Numerical results are presented in support of the
theory.
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1 Introduction

Consider a system of singularly perturbed robin type initial value problems with dis-
continuous source terms on the unit interval Q = (0, 1], assume a single discontinuity
in the source term at a point d € Q. Let Q= = (0,d) and Q" = (d, 1] and the jump at
d in any function is given as [w](d) = w(d+) —w(d—). The corresponding initial value
probles is to find u, uz,...,u, € D =C%Q)NCHOQ~ UQ™), such that

—

Li(z) = E@ (z) + A(z)d(z) = f(z), zeQ uQt (1)

with the prescribed initial conditions

-y

—~
[\V]

N—

pii(0) = i(0) — eif'(0) =

where, E = diag(e,¢,...,¢e), @(z) = (ui(x),u(z), - ,un(z))T, A®) = (aij(®))nxn

and f(z) = (fi(x))nx1-

The problem (1) and (2) can also be written in the operator form

Li = fon Q (3)
with B .
Bi(0) = ¢ (4)
1
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where the operators E, B are defined by

L=ED+A, B=I—-FED

d
where [ is the identity operator, D = — is the first order differential operator.

dx

Assumption 1 The functions a;j, f; € c® (), i, = 1(1)n satisfy the following posi-
tivity conditions

() au(z) > > laij(x)| for i=1(1)n B
jjfi Ve (5)
(i1) aij(x) <0 fori#j and i =1(1)n

Assumption 2 The positive number o satisfy the inequality
0 <a< min Zaij(x) . (6)

Assumption 3 The singular perturbation parameters € satisfy 0 < e <1 is assumed to
be distinct.

The above problem is singularly perturbed in the following sense. The reduced problem
obtained by putting € = 0 in the system (1) is the linear algebraic system

A(2)t(z) = f(z), zeQ uQt (7)
ai1(z) apa(z) -+ ap(z)
where A(z) = | 1) ale) e anl@
an1(z) apa(z) -+ app(z)

2
(@) = (vi(@),va(@), -, on ()T and f(z) = (fi(2), fo(®), -, ful2))"-

The source terms f1(x), f2(z), ..., fn(z) are sufficiently smooth on Q\{d}. The solu-

tion components uj, ug, ..., u, of the problem (1) and (2) have overlapping initial layers
at z = 0 and have overlapping interior layers to the right side of point of discontinuity
at r =d.

Theorem 1 Let A(z) satisfy (5) and (6). The problem (1) - (2) has a solution i € D.

Proof. The proof is by construction. Let i and 2’ be the particular solutions of the
differential equations

Eyi(z) + A(z)yi(x) = fi(z), i=1,2,...,n, forall x € Q (8)
and
Ezl(x) + A(x)zi(z) = fi(z), i=1,2,...,n, forall z€ Q" 9)
2
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e 00 0 ain(z) ae(z) -+ ap(z)
00 --- 0 as1(x) aos(xz) -+ aop(x

where F = ) , A(z) = 21.( ) 22.( ) ) 2 ( ) respectively.
000 --- ¢ ap1(z) apa(x) -+ app(z)

Consider the function

i(z) = {yl(az) +/g(uz(0) —yi(0)pi(z), i=1,2,--- ,n, €™

ZZ(:L’) + Bigbi(x), (10)

where gz; is the solution of

E¢; + A(z)¢i(x)
Bii(0)
Here B;,i = 1(1)n is chosen so that @ € D. In ©, 0 < q; < 1, there can be no internal

maximum or minimum for ¢ and hence ¢, <0, i =1(1)n in Q. Choose the constants
B; such that

=0
I,}1'21,2,~~,n, for all z € Q.

y(d—) = Z(d+)u(d—) = u(d+).
For the constants B; to exist, it is required that

[4i(0) — %i(0)]$i(d—)
¢(d+)
Since ¢;(d+) > 0 is true, the existence of B and hence i is ensured.

Remark: Throughout this paper, we use C as a generic positive constant vector which
are independent of the perturbation parameters and the discretization parameter NN.

#0  fori=1(1)n.

2 Analytical Results

The operator L satisfies the following maximum principle.

Lemma 1 Let A(z) satisfy (5) and (6). Suppose that a function @ € D satisfies ﬁﬁ(o) >
0, Li(z) > 0 for all z € Q= UQT. Then @(z) >0 for all x € Q.

Proof. Let u;(p;) = min{u;(x)}, for 1 <i < n. Without loss of generality assume that
€0

x
ui(p1) < wi(p;), for 2 <@ < n. If uy(p1) > 0, then there is nothing to prove. Suppose
that ui(p1) < 0, then the proof is by showing that this leads to contradiction. Note that
p1 # {0}, so either p; € Q= UQT or p; =d.
Case (i): p1 € Q- UQT,

Fit(0) = @(0) — £ (0)

< 0, a contradiction

and

(Lii)1(p1) = vl (p1) + Y _ a1j(p1)u;j(p1)
j=1

< 0, which is a contradiction.
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Case (ii): p; =d,

since @ € C(2) and ui(d) < 0, then there exists a neighbourhood N = (d — h,d)

such that ui(x) < 0 for all x € Nj. Now choose a point z1 # d, x; € Nj such

that ui(z1) > wui(d). It follows from the mean value theorem that, for some zy €
d) —

Ny, u)(x2) = (d) ~ (o)

Thus by similar argument of the first case, it follows that,

< 0, since x9 € Ny,

(Lii)y (w2) = ety (w2) + Y _ a1j(w2)u;(22) < 0.
j=1

which is the contradiction.
As an immediate consequence of the above lemma the stability result is established in
the following.

Lemma 2 Let A(x) satisfy (5) and (6). Let @ be the solution of (1) and (2). Then,

. o L=
ol < max { GO F11ETo-cor |-

Proof. Define the two functions

- - 1 -, N
() =max { ]| 50 I | Lo } + @), o0
0% (z) = M + i(x)

where M = max{||3a(0)||, éHI_/’ﬁHQﬂjgﬁ} Using the properties of A(x), it is not hard

to verify that B6%(0) > 0 and L6*(z) > 0on Q UQT. It follows from Lemma 1
that 6=(z) > 0 on Q. Hence,

. 3o 1=
)] < max { 3O 11| Edlla-sor |

Lemma 3 Let A(x) satisfy (5) and (6). Let i be the solution of (1), (2). Then, for
each i, i=1,2,---,n and v € Q= UQT, there exists a constant C such that

@) < {1161+ 1 F llo-vor }
ui@)] < {1 G 1+ 1 Fllo-vor §
jw/ @) < Ce2{U G 1+ I Fllo-var + 1| 7 llo-ves |
Proof. From Lemma 2, it is evident that,
()] < IFFO)I + 1 Edlla-uas-

Thus,

@) < C{I 61+ 1 F llo-vor }
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Rewrite the differential equation (1), we get
i (z

) = E7}(f — Ai)
Hence, [u}(z)] < Ce (1|8l + || flla-va+)
Differentiating (1) once, we get
Eid" (x) + A(x)d@ (z) = f'(z) — A (2)d(x).
Using the bounds of 4’ and @
i (@)] < e 1 F @)+ Ce (10l + [1£11) + C(lIgl| + [ F1D]

and hence,
jui ()] < Ce (|11 + 1161l + | flla-va+].

3 Estimates of derivatives

To derive sharper bounds on the derivatives of the solution, the solution is decomposed
into a sum, composed of a regular component ¥and a singular component . That is,
i = ¥+ w. The regular component ¥ is defined as the solution of the following problem:

Li(z) = f(z), e Q UQt
B(0) = Ftio(0) (11)
The singular component w is defined as the solution of the following problem
Lii(z) =0, zeQ uQt
B (0) = B(i - 9)(0), [@)(d) = —[5](d). (12)

Theorem 2 Let A(z) satisfy (5) and (6). Then the components v;, i = 1(1)n of the
reqular component U and its derivatives satisfy the bounds for all x € Q= U Q" and
k=0,1,2,

158 lg-uo+ < C for k=0,1
Eld<C i) <C
107 [l-uar < Ce™" fori=1(1)n.

Proof. Following the techniques in [], one can arrive at the results

15 |g-ug+ < C for k=0,1
Alsofori=1,2,--- ,n,

10 [lo-ua+ < Ce™
and
|[vil(d)] = vi(d+) = vi(d=) < [vi(d+)] + |vi(d=)[ < C.

Similarly, |[¢"](d)| < C, and hence the proof is completed. Now bounds on the layer
components of « are to be found. Consider the layer functions

By (z) = e % B, (x)=e =D/ i =1(D)n.

7
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Theorem 3 Let A(x) satisfy (5) and (6). Then the components w;, i = 1(1)n of the
reqular component W and its derivatives satisfy the bounds for all x € Q= U QT

CBy,(x), =€ Q™
wi(x)] < "
CBTn(CE)7 T € QJ’_

Ce1 i By (z), v€Q

|wi(z)| < &
Ce 'Y B, (), vt

q=1
Ce 'S By (x), rEQ

jwi'(z)] < T
Ce 'Y By (z), z€Qf

q=1

Proof. We have @ = ¥+ @ and by Lemma 2 |@(0)| < C and |@(d+)| < C. Define the
barrier function

§E=0CB, (v)e

with C' chosen sufficiently large such that £ > |@] at = 0, d+,

n n n
LfICBln E alj—a,g agj—a,'--,g anj—a
Jj=1 J=1 Jj=1
> 0 = | Lo~

and it is not hard to see that 3£(0) > 0. Using maximum principle (1), we get the re-
n
quired bounds on . Now to bound first-order derivative of w;, consider ew}+ " a;jw; =
i=1
0, together with the bound on . This implies that

|w;<x>rs{05 W) e

Ce 1B, (2), v€Qt
Now to find the sharper bound consider the system of n — 1 equations
Ed + Aw = h,

where E, A are the matrix obtained by deleting the last row and column from FE, A

respectively and the components of h are h; = —a;pwy,, for 1 < ¢ < n — 1. Using the

bounds derived earlier and the decomposition of W = ¢+ 7, into regular and singular

component we get the required result. Now to bound second-order derivatives, differen-

n

tiate ew] + . a;jw; = 0 once and using the estimates of w), we get the required bounds
j=1

on singular component w and its derivatives.

Lemma 4 For all i,j such that 1 < i < j < n, there exists a unique point x;; € (0,d)

such that e 1By (x;5) = e ' By (2i5). Also, e ' By, (d 4 ;) = e 1B, (d + x;5). On

[0,2;) we have e ' By, (x) > e ' By, (x) and on (z;;,d) we have e ' By, (x) < e ' By, ().

Similarly, on (d,d + x;;) we have e ' By (z) > e ' By, (z) and on (d + x;;,1] we have

e !B, (z) < e 'B,, (2).
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For the analysis of the convergence, a more precise decomposition of the components of
the singular component w is required. The next Lemma provides the necessary estimates
of decomposed layer functions.

Theorem 4 The singular component W can be decomposed in this way as follows, for

1< <n:
z) = Zwi,q@)
q=1
where
|w{ (ZL‘)| < Cé‘lelq(l'), r e W (x)| < CE?lqu(x), rc O
~|Ce'B, (@), weQt T T | CeTIBy,(2), zeQF

Proof. Define a function w;; as follows

wzl —wz 5 wzq

and for 1 < ¢ < n, we have

z (oo™ (1), & € 10,24 1),
wilz) = 3 wip(z), & € [24-14d),
r=q+1

Wi,q =

E fe=d=rr )Ny (d 4 2y 14), @ € (dyd+2q14),

wi(@)— % Wiy (), z€ld+xg191]
r=q+1

Now we establish the bounds on the second derivative.
For z € [xp—1n,d] U [d+ 2p—1n,1],

|6w;'n(x)| = |ew! (z)] < Ce™! Zqu (z) < Ce !By, (z).
q=1

For z € [0, zp—1n) U (d,d+ Zp—1,n),
lewy ()] = lew] (2n-1.0)] < Ce™" > By, (zn-12) < Ce ' By, (#n-1) < Ce ™' By, ().

q=1

Now for each 2 > ¢ > n — 1, it follows that
For z € [xg—1,4,d) U[d+ 24-1,4,1],

For z € [0,24-1,4) U (d,d + z4—1,4],

n
|€w§fq(x)\ = lewi (24-1,4)| < o Zqu(xq—lyq) < Cg_lqu(xq—l,q) < Cg_lqu ().
g=1
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For z € [x12,d) U [d + z1.2,1],

For x € [O, 1‘172) U (d, d—+ $172],

n n

lewf (2)] = |ew () =) ewfy(2)] < Ce™' Y By, (2) < O™ By, (2).

q=2 g=1

For the bounds on the first derivatives we have the relation

[wjq(x)] =

Lq,q+1 ” J <C*1
wiyq(t) t| < Ce
x

Lq,q+1
/ B, (t)dt’ < Ce !By, ().

4 The Shishkin mesh

A piecewise uniform mesh with N mesh-intervals is constructed and mesh points {z; };-V:O
are obtained by dividing the interval Q into 2n + 2 sub-intervals as follows.

Q=1[0,01]U (01,00] -+ (001,00 U (op,d] U (d,d + 1] U (d+71,d + 7| U (d+ Tn1,d + ] U (d + 7, 1].

where 01, 09,...,0,, T1,T2,...,T, are the transition parameters satisfying

d 1—d
0<0’1<02<---<0n§§ and d<7‘1<7'2<---<7'n§T.

The interior points of the mesh are denoted by
N N

QN:{xizlgig —1}U{xi:2+1§i§N—1}:Q_NUQ+N

hi + hita

2

on the sub-intervals [0,01] and [d,d + 71] a uniform mesh with 220 mesh intervals are

Let h; = z; — xi—1 be the i*" mesh step and h; = , clearly xx = d. Then
2

placed and similarly on (o, oks1], (d + 7k, d + T11], 1 < k < n — 1, a uniform mesh

N
with Jon—2k73 mesh intervals and on (o, d] and (d + 7, 1] a uniform mesh of T mesh
intervals are placed.

The 2n transition points between the uniform meshes are defined by

d 1—-d
0p = Mmin f,ElnN , Tp, = min 7,£lnN
2"« 2 «

and forr=n-—1,...,2,1,

UT:min{JrJrl,ElnN}, TT:min{TrJrl,ElnN}
2 "« 2 T«

This construction leads to a class of 22 piecewise uniform Shishkin meshes.
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5 The Discrete Problem

The Initial Value Problem (1), (2) is discretised using a fitted mesh method composed

of a classical finite difference operator on a piecewise uniform fitted mesh Q. Then the
fitted mesh method for solving the system (1) and (2) is, for i = 1,2,...,n,

- - > N
(LY0)i(wj) = ED™U (25) + A(w;)U (2;) = fla5), 5 # (13)
with
BU(0) = U(0) - eD*T(0) = ¢ (14)
and at x~ = d, the scheme is given by
2
ENU*(Q;%) = ED_U(x%) + A(x%)(j‘(x%) = *(x% —1).

The problem (13), (14) can also be written in the operator form
LNU = fon O with
sNU(0) = ¢
where LV = ED™ + A with
BN =T1—eD*I

and DT, D~ are the difference operators

D0 () = U(zj) = U(zj-1) D+ (z;) = U(wj1) — Ulzy)
! v — w1 ! Tjt1 = T

. j=1,2,...,N.

The following discrete results are analogous to those for the continuous case.

Lemma 5 Let A(x) satisfy (5) and (6). Suppose that a mesh function 2(x]) satisfies
BZ(x0) >0 and I_;NZ(J:‘j) >0, for all z; € QN and (Dt — D) Z(zn) <0, implies that
2

Z(xj) > 0 for all z; € Q.

Proof. Let z, be any point at which Z(xq) attains its minimum on Q. If Z(xq) > 0,
then there is nothing to prove. Without loss of generality, Suppose that Zi(z,) < 0,
then clearly, z, # 0. If , = 0, then

BNZ(0) = Z(0) —eD* Z(0)

< 0, a contradiction.
Therefore, x4 # 0. If ¢ # N/2, it is clear that
D™ Zy(xg) <0< D" Zi(z,)

and hence if 7, € OV, ¢ # N/2, then

—

(LNZ)l(QUq) =eD™ Z(xq) + a11(xq) Z1(zq) + - + a1n(2¢) Zn(zq) <0
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which is a contradiction. Hence, the only possiblity is that z;, = x~. Then
2
D™ Zi(zn) <0< D" Zi(zn) < D Zi(zn).
2 2 2
From the above it is observed that

<0

Zl(a:%_l) = Zl(l’%) = Zl(x%H)

then, (ENZ_’)l(‘Tﬂil) < 0, which is a cotradiction. Hence the result.
2

Lemma 6 Let A(z) satisfy (5) and (6). If U be the numerical solution of (1) and (2),
then

. - 1 -
103l < max {1BTOIL 2 1llo-woe |
Proof. Define the two mesh functions
. R 1 - .
§%(z) = max {FYE O 21 Flla-vonon | £ 00ay)

Using the properties of A(x), it is not hard to verify that ENéi(o) >0 and LVO* >0
on QY. Applying the discrete maximum principle (Lemma 5) then gives ©F > 0 on
=N

", and so

. - 1 -
e < max {IFYFOIL 31l soar |

as required.

6 The Local Truncation Error

From Lemma 6, it is seen that in order to bound the error || — ]|, it suffices to bound
LN (U — ). Notice that, for z; € QV,

LV (U(ay) — ilay) = N0 (ay) - LVi())
= E(D™ — D)u(z;)
and
(L= LM)u)i(z;) = e(D™ = D)vi(w;) + (D~ — D)w;(x;)
which is the local truncation of the first derivative. Then, by the triangle inequality,

(LN (U — @))i())| < (D™ = D)wi(a;)| + (D™ = Dywi(a;)].

Analogous to the continuous case, the discrete solution U can be decomposed into 1%
and W which are defined to be solutions of the following discrete problems

(LNV)(xj) = flz;) on QN BNV/(0) = Fui(0) (15)
and
(LNW)(z;) =0 on QY, YW (0) = Fw(0) (16)
10
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where ¥ and & are the solutions of (11) and (12) respectively.
Further, for i = 1,2,...,n,

(LY (V = 0))i(z5)| = [e(D™ = D)vi(a;))| (17)

(LN (W = @))i(z1)] = [e(D™ = D)wi(z))|- (18)

The error at each point z; € Q" is denoted by (j’(xj) —i(xj). Then the local truncation
error EN(ﬁ(x]) — 1(x;)) has the decomposition

LN — a)(x;) = LY(V = 8)(25) + LY (W — @) (=)

By a Taylor expansion on regular and singular components, we have

d Tj— T
(4 -0 ) ulap) < 0 =5y < on (19
and
p ) CSWIWHQ
le @_D wi(25)] < Ce max |wy]| (20)

[xj,@5-1]

where k=1,2,...,n, j# %
The error in the smooth and singular components are bounded in the following section.

7 Error Analysis

The proof of the theorem on the error estimate is split into two parts. First, a theorem
concerning the error in the smooth component is established. Then the error in the
singular component is established.

Theorem 5 Let A(x) satisfy (5) and (6). Let U denote the smooth component of the
solution of (1), (2) and V denote the smooth component of the solution of the problem
(13), (14). Then

(EN(V = #))ifey) < ON?

Proof. From the expression (19),
(BN (V = 8)i(0)] < C(a1 — o) x| |07 (5)] (21)
<CN™!
It is not hard to find that
£(D™ — DJui(a;)] < Ohy maxevf (5)
< Ch;
<CN™!

as required.

11
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Lemma 7 Let A(z) satisfy (5) and (6). Let & denote the smooth component of the
solution of (1), (2) and W denote the smooth component of the solution of the problem
(13), (14). Then

(LN (W — @));(z;)| < CN"'In N
Proof. For the proof of this theorem, we have to evaluate the error estimates for the

singular components on different subintervals considered as follows:
Case (i): For z; € [0y, d) U [d + Ty, 1].

From the expression (20),

(BN (W —1@))i(0)] < Ce(1 — x0) max |w]

x0,21]
<CN'lnN
Using (20) and bounds on singular components, we have for i =1,2,...,n
n

oN 7 By, (x)
(LY = L)w)(x;)| < Cey  ———

S CHBln|’[$1717xl] = Bln(xi—l)

<CON™%L

Similar arguments prove a similar result for the subinterval [d + 7,,1]. Hence, for
xj € [op,d) U [d+ 7p,1] we have

(LY = Ly@)i(;)| < ON~*.
Case (ii): For z; € (0,01] U (d,d + 11].

Using (20) and bounds on singular components yields

(LY = Ly@)i(z;)] < Clai — wiz1)|lew]]

hie ™! ZBZQ (z)
q=1
<CN'InN.
Case (iii): For z; € (0,,0p41) U (d+ 7p,d + Tr41), where 1 <r <n —1.

Using the decomposition in Theorem 4 of singular components and bounds on sin-
gular components gives

(@ Dyt = S (&~ 0 uate 2 (- D Yuate|. 22

g=1

Consider the first part of (22) and using the bounds on singular components, we obtain

n—1 d
e (g5 -0 ) wiale) <\|st [

q=1
< CBln_1 (75-1)
< CNL.

12

Volume 8, Issue 9, 2022 PAGE NO: 48



Sankalya Journal ISSN NO: 2277-9264

Using the bounds on singular components for the second part of (22), we have

£ (ddx - D_> Wi (2;)

h4
< L lewf|

<CN~'InN.

Case (iv): For z; € {o,,d+ 7.}, where 1 <r <n —1.

Using the decomposition of the singular components and bounds on singular com-
ponents defined in Theorem 4 gives

(@ Eyne)l = e (D Yo ve (D Yuate| - 09

Consider the first part of (23) for the case i < r, and using the bounds on singular
components, we obtain

n—1 n-l
d _
Zs (dx - D > wiyq(l‘j) < wag,qn[:ci—wi}

q=1 q=1
<CN '

and if ¢ > 7, using the bounds on singular components and the analysis in Case (i), we
have

n—1 n—1
d _
e (4~ 07 ) wnalen)] < I evlyllin o

q=1 g=1
<CONL
For the second part of (23), use bounds on singular components defined in Theorem 4,
to obtain
5 a4 D™ | win(x))| < Chyllew! ||
dx ) J — 7,M
<CN'InN.
Now at the point z~ = d,
2
PN /74 " " Ty <1< TN
(LY (U — @))i(d)] < Ceht  max  |uf(n)|+Ceh™ max |uf(#)] where 2 2
TNTN [x%,lﬂ»‘%} :L‘%f1 <9<1’%

< Celo N7t Z By(n) + Ce N1 Z B,(0)
q=1 q=1

<CeloyN'+Ce'N7'B,(0)
<CN'InN.

We conclude this section with the following main result which follows by using the error
analysis for the regular and singular components, and the discrete maximum principle.

13
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Theorem 6 Let @ be the solution of the continuous problem (1), (2) and U be the
solution of the discrete problem (13), (14). Thus, for N sufficiently large,

I(LN(T —@)|| < CN"'In N

where C is a constant independent of € and N.

Proof. Consider the two mesh functions
o (o) CN~'In N(1 + 2x;) + LN (Ui(z;) — wi(zy)), j <
S\, ) = —
e CN~'InN(d+ ;) + LN (Ui(z;) — ui(z;)), >

SR

where C' is suitably chosen sufficiently large constant. Hence for j < %, it is not hard
to verify that (3V6%);(0) > 0 and
n
(ENF)i(xj) = CeN"'In N + CN ' In N(1+ 225) Y aip(ay) = LN (Ui(a) — wa(a;))
p=1

>CN T In Y ag(z)) & LV (Ui()) — ui(x;))
p=1
>CN 'lnNa+CN'InN

>0
. N
and for j > 5,

(LN6%)i(zj) = CeNT'In N + CN ' In N(d+ 25) Y aip(a;) £ LY (Ui(x;) — ui(a;))
p=1

>CN™! lnzn:aip(xj) + LV (Ui(z5) — wi(zy))

p=1

>CN 'InNa+CN'InN

> (.
Andforj:%
e (d+$ﬁ+h+—1—2xﬂ) (I+zy)—(1+axy —h7)
(LN6H)i(xn) =CN'In N 2 2. _CON'lnN 2 — 2

2 ht h
-1 (h+_1) -1 -1
=CN lnNT—CN InN+CN 'InN
<0.

Thus, for N sufficiently large,
|IU—-d@|<CN'InN

which completes the proof.
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8 Numerical Illustration

The numerical method proposed above is illustrated through an example presented in
this section.

Example 1 Consider the following singularly perturbed robin type initial value problems
with discontinuous source terms

eul(z) + (2 + 2)ur(z) — uz(z) —uz(z) = filz), z€Q UQT

eub(z) — up(x) + dus(z) —us(x) = fo(z), z€Q UQT
euly(x) — up(x) — ug(x) + (4 + “)ug(x) = f3(z), r€Q UQT

with

/Bul(o) = ]-a BUQ(O) = 17 BU3(0) = ]-7

where

1 for0<z<0.5
fi(z) =
1 for05<z<1,

for0 <z <0.5

INE )2 for0 <z <0.5
fz(x)_{0.5 for05 <z <1, f?’(x)_{

1 for05<z<1,

The ezact solution of the test example is not known. Therefore, we estimate the error

for U by comparing it to the numerical solution U obtained on the mesh Z; that contains
the mesh points of the original and their midpoints. For different values of N and the
parameter €, we compute

DY =|U = U(x:)llg-

The numerical solution obtained by applying the fitted mesh method (13) and (14) to
the Example is shown in Figure 1. The order of convergence and the error constant are
calculated and are presented in Table 1.

ISSN NO: 2277-9264

n Number of mesh points N
72 144 288 576

0.100E+01 | 0.190E-01 | 0.104E-01 | 0.547E-02 | 0.280E-02
0.250E+00 | 0.389E-01 | 0.222E-01 | 0.117E-01 | 0.605E-02
0.625E-01 0.408E-01 0.272E-01 | 0.169E-01 | 0.101E-01
0.156E-01 | 0.400E-01 | 0.266E-01 | 0.166E-01 | 0.984E-02
0.391E-02 | 0.398E-01 | 0.264E-01 | 0.165E-01 | 0.978E-02

DN 0.408E-01 | 0.272E-01 | 0.169E-01 | 0.101E-01

pv 0.588E+00 | 0.683E+400 | 0.750E4-00

C}JDV 0.151E+01 | 0.151E+401 | 0.141E+01 | 0.126E+01

The order of & -uniform convergence p* = 0.5880695F + 00

Computed & -uniform error constant, Cé\i = 0.1508601F + 01

Volume 8, Issue 9, 2022

Table 1: Maximum pointwise errors DY, DV pN  p* and C'}],\l generated for the
example.
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