Sankalya Journal ISSN NO: 2277-9264

MODIFIED THERMOSOLUTAL INSTABILITY PROBLEM IN RIVLIN-
ERICKSEN ELASTICO-VISCOUS FLUID: A CHARACTERIZATION
THEOREM

Hari Mohan'#*, Pardeep Kumar® and Maheshwar Singh?

Department of Mathematics, [CDEOL, Himachal Pradesh University,
Summerhill Shimla-171005, India

Abstract: The present paper considers modified thermosolutal instability problem
of a layer of Rivlin-Ericksen elastic-viscous fluid. A mathematical theorem
disallowing the existence of neutral or unstable oscillatory motions in an initially
bottom heavy modified thermosolutal convection configuration of the Veronis type
with a quite general nature of bounding surfaces whenever the modified
thermosolutal number is less than a critical value, is established. A similar theorem
for Stern’s type configuration in initially top heavy modified thermosolutal
convection in a layer of Rivlin-Ericksen elastic-viscous fluid is also established.
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1. INTRODUCTION

The thermohaline convection problem has been extensively studied in the recent
past on account of its interesting complexities as a double diffusive phenomenon.
The study is important because of its direct relevance in many problems of practical
interest in the field of oceanography, astrophysics, geophysics, limnology,
biomechanics and chemical engineering etc. For a broad and a recent view of the
subject one may be referred to Brandt and Fernando [1]. Banerjee et. al. [2]
formulated a novel way of combining the governing equations and boundary
conditions for each of the Veronis’ [3] and Stern’s [4] thermohaline configuration
and derived a semi- circle theorem prescribing upper limits for complex growth rate
of an arbitrary oscillatory perturbation neutral or unstable.

Banerjee et. al [5] in their investigation pointed out that the Rayleigh’s
utilization of the Boussinesq approximation overlooks a term in the equation of
heat conduction. This term finds its place on account of the variations in specific
heat at constant volume due to variations in temperature. As a consequence of
which, in the usual circumstances it cannot be ignored if the Boussinesq

approximation were to be consistently and relatively more accurately applied
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throughout the analysis. The essential argument on which this term finds a place in
the modified theory is this that it is the temperature differences which are of
moderate amounts but not necessarily the temperature itself. The incorporation of
this term into the calculations adequately completes the qualitative and quantitative
gaps in Rayliegh theory.

Theorem 12 and 13 in Banerjee et. al [5] yields in case of Veronis and
Stern’s thermohaline configurations upper limits for the growth rate of an arbitrary

oscillatory perturbation neutral or unstable for the case 02 =0,which provides
natural extension of the earlier results of Banerjee et. al [2] These results are
obviously not derivable by the methods adopted by Benerjee et. al when 22 [ 0 on

account of non-trivial coupling between ,0 and w in the equation of heat

conduction. However, appropriate transformations can overcome this difficulty and
can help in deriving the desired results. Mohan [6] extended the results of Banerjee
et. al [5] contained in Theorem 12 and 13 for the modified thermohaline
convection to the case whenfl2 © 0, through the construction of an appropriate
transformation on the solution space of the problem and the derivation of suitable
integral estimates.

In all the above studies, the fluid has been considered to be Newtonian.
However, with the growing importance of non-Newtonian fluids in modern
technology and industries, the investigations on such fluids are desirable. The
Rivlin-Ericksen [7] fluid is such fluid. Many research workers have paid their
attention towards the study of Rivlin-Ericksen fluid. Johri [8] has discussed the
viscoelastic Rivlin-Ericksen incompressible fluid under time dependent pressure
gradient. Sisodia and Gupta [9] and Srivastava and Singh [10] have studied the
unsteady flow of a dusty elastico-viscous Rivlin-Ericksen fluid through channel of
different cross-sections in the presence of the time dependent pressure gradient.
Sharma and Kumar [11] have studied the thermal instability of a layer of Rivlin-
Ericksen elastico-viscous fluid acted on by a uniform rotation and found that

rotation has a stabilizing effect and introduces oscillatory modes in the system.
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Sharma and Kumar [12] have studied the thermal instability in Rivlin-Ericksen
elastico-viscous fluid in hydromagnetics.

Motivated by these considerations, the present paper investigates the
problem of modified thermosolutal convection in Rivlin—Ericksen viscoelastic fluid
of the Veronis’ and Stern’s type configurations. A mathematical theorem
disapproving the existence of neutral or unstable oscillatory motions in an initially
bottom heavy modified thermosolutal convection configuration of Veronis type in a
layer of Rivlin Ericksen elastic-viscous fluid is established. A similar theorem for
Stern’s type configuration in initially top heavy modified thermosolutal convection

in a layer of Rivlin-Ericksen elastico-viscous fluid is also established.

2. MATHEMATICAL FORMULATION AND ANALYSIS

The relevant governing equations and boundary conditions of modified

thermosolutal instability of a Rivlin—Ericksen elastic- viscous fluid are given by

[2,7] ) )

(D*a?) a+Pyp2ca? P w=R aNTR sT (1)
:D :D T y
(D*0a? 0 pHoTl, D oTE R opB=0(10T8, JwiTH, Rw | )

o= 3)
i [

together with the boundary conditions
w=0=0=0=Dw at z=0 and z =1 (4)
(both boundaries rigid)

or w=0=0=0=D%w atz=0 and z =1 (5)
(both boundaries dynamically free)

or w=0=0=0=Dw atz=0
w=0=0=0=D%w atz =1 (6)
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( lower boundary rigid and upper boundary dynamically free)
or w=0=0=0=D%w atz=0

w=0=0=0=Dw atz=1. (7

( lower boundary dynamically free and upper boundary rigid)
The meanings of symbols from physical point of view are as follows;

z is the vertical coordinate, d/dz is differentiation along the vertical

direction, a’ is square of horizontal wave number, ¢ =" is the thermal Prandtl

2| ?)
number, [ = %W - F= % - -
) T is the Lewis number, d_21S the viscoelastic parameter,

¢80 d* ¢am 4

L is the thermal Rayleigh number, R s ’

— is the concentration
I

R

Rayleigh number, , w is the vertical velocity, [ is the temperature, [ is the
concentration, p is the complex growth rate,l> is the coefficient of specific heat
due to variation in temperature and f2is analogous coefficient due to variation in

concentration.

In equations (1) — (7), z is real independent variable such that 0 <z <1,

D _? is differentiation w.r.t z , a® is a constant, 6 > 0 is a constant, (| >0 is a
VA

constant, 0<F<I, Rr and Rs are positive constants for the Veronis' configuration and

=

[

negative constants for Stern's configuration, R3 = is the ratio of concentration

=

gradient to thermal gradient, p = p: + ipi is complex constant in general such that p;
and p; are real constants and as a consequence the dependent variables w(z) = wi(z)
+ iwi(z), [(z) = [O.(z) + iUi(z) and [ (z) = [, (z) + 1lJ;(z) are complex valued

functions (and their real and imaginary parts are real valued).
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Equations (1) — (3) together with the boundary conditions (4) — (7) describe
an eigenvalue problem for p and govern modified thermosolutal instability of
Rivlin-Ericksen viscoelastic fluid for any combination of dynamically free and
rigid boundaries.

We now prove the following theorems:

Theorem 1: If R >0, R;>0,F>0, B(1 0 7%@,)>1  pr >0, pi ¥ 0, and

RS' < (1 —Toaz2) {277'[4 1+ z) +FT 2567‘[6}

B 4 o o 27

then a necessary condition for the existence of a non-trivial solution (w, a2, p) of

equations (1) — (3) together with boundary conditions (4) — (7) is that

R < T(1—Toa).
S B

Proof: Equation (2) upon utilizing (3) can be written as

(D*uaopiore Neorg R pa(p?cat)a=0(0T8, ) . (8)

Using the transformations

w=w
iv:<lﬂjfmz)[lmll
1=t

(8%)

equations (1), (3) and (8) and the associated boundary conditions (4)-(7) assume the
following forms: . ) 7 7
(Dziaz)’(l+ p)D2:a2:p’w=R'a2:R'a2 9)

U —0
C 7 T s
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{p* a2 0 p(10TE, )}E = CBw, (10)
‘pogoPgent (11)
; T
with

w=0=0 =0=Dw at z=0 and z=1 (12)
or

w=0=0 =B=D*w at z=0 and z=1 (13)
or

w=0=0=0=Dw atz=0

w=0=0=0=Dw atz=I

(14)
or
w=0=0=0=D*w atz=0
w=0=0=0=Dw atz=1
(15)
where

_ RTOLRY _p 4 RTORS
To@(one)or )T T @@onm)o )’
0 <1:T “1)
and B=(liT0 2):14- 0 2) "5
. TA,RI -

and the symbol ~ has been omitted for convenience.

Multiplying equation (9) by w* (the complex conjugate of w) throughout and

integrating the resulting equation over the vertical range of z, we get
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1 1 1
Fp\(p2 7,2y~ P o o

Dw”‘(D2 ]az){ <+ T >(D Oa")O }deZRTazi w*dz I R g% 8wz

0 ' ' 0

(16)

Taking the complex conjugate of equations (10) and (11) and using the resulting
equations in equation (9), we get

(17)
Integrating equation (17) by parts a suitable number of times, using either of the
boundary conditions (12)-(15) and one of the following inequalities
1 2

1
0 * D dz=(Dl)”Db‘ \dz, (18)
0

0

where,

=0 =0, forn=0,1and®@ =w, forn=0,1, 2,

we have

X - 1
(B2} o caalouf st 2 (puf' s a2

R 0
ko 2

= I 2:[ 1 | +a2% |)+p*<1m“2>E| |dz

a
B 0

~Ra’l-[( DB} +a§ |2)+||2 |z

0

19)
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Equating the real and imaginary parts of equation (19) equal to zero and using
p;1 0, we get

1?‘D2w‘2+2a2 f)w|2+a4rv|2?dz+ éFf ‘D2w‘2 +2a2|Dw|2+a4 w|2?dz+- =
o[ 0 o U 0
1

1 R
{out + @l )iz e [ (om] +appyep, (07 B Ja:

0 0

1

+ Rt -[( (DB} +a2q1|2)+*fFf ldz=0

0

(20)
and
El , 2 2 2 4 2 llg 2 2 2)
‘ ‘ +2a Dw +a |w| | +a |W| dz +
(D w Ydz+ [ Dw
0 0
MDT ) l2 S
i B e a:Do| | dz I Rsa? QH dz=0 21)
Equation (18) can be written in the alternative form as
ik 2w2+2a2f)w2+a4 Tedz+ pF' \D? 24242 Dw +a*w dz+F-
P B e i B
0" B 0
1 - 1 1
]0 lez +a2|w|2)dz=%a2_[ QD:I +a2| |2) dzDRSﬁ 7[( |D1 +a2||2)dz
0 0 0
tpa{ g 10TE 1%dz0R B | (22)
A N
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and derive the validity of the theorem from the resulting inequality obtained by
replacing each one of terms of this equation by its appropriate estimate.
We first note that since w, [ and [ satisfy w (0) =0 =w (1), [1(0) = [I(1) =0 and
1(0) =0= [1 (1), therefore we have by the Rayleigh-Ritz inequality [13]

1 1
bwkdzo 2 ddar (23)
0 0
1 1
brtazo bl (24)
0 0

1

1
‘ptaz 2 Pl (25)
0

0

1 1
and |’ ‘2dz:: Y[z (26)
0 0

Utilizing inequalities (23) and (26), we get

2

10 2 2 2 4 10
’[‘Dw‘ +2a |Dw| +a |w| 1dz ¢ (: +a ) |W| dz . (27)
o U i 0
Further, since p; > 0, therefore we have
1
pF 0 o 2 2 2 4 1l
o iDW‘ +2a |DW| +a |W| dz70 (28)
72 ]
and
1
Pr ng“raz Dwz)dziO , (29)
.
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Now, multiplying equation (10) by [ (the complex conjugate of [) and
integrating the various terms on the left hand side of the resulting equation by parts
for an appropriate number of times by making use of the boundary conditions on !

namely [1(0)=0= [](1), we have from the real part of the final equation

(o ) ( ®)p (o)
B|D | +a | | dZ+pr 1[TO 3:0| |dZTRealpart0f QB wdz

1

UB D*wdz
0

1
1B d *w‘dz
0

1
o [P
0

1 ot o, ih
poipf dzr | de
g S h

20 U I U

(using Schwartz inequality)

Using inequality (22) and the fact that p: > 0, in the above inequality, we have

! ! o N

2

2 2 ) ) )
CO IR R
0 0 o iy
which implies that
1 ,y 1 7y
“ni2dz? 1 v 2dzt 2
AR "]

) ) )
lo i l )iﬁo up
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and thus

l(DD2+e12[2)dz B : E\W|2dz_ (30)
AN o),

Further, using inequality (25), we have

1 1

:(|D:f-|-a2H)dz:(:z—i-az)::Hiz . (31)

0 0

It follows from equation (21), that

Ra &l v 7 5, 2 2 llg 2 z) (32)
s DH D(‘Dw‘+2a Dw +a W| |+awdz

. . Ydz+ [] Dw

0

Combining the inequalities (31) and (32), we have

1(D:2+a2:2)dzi (D2+a2)F1[ ‘ ‘2+2a2 Dw2+a* w2 dz

L PP R
3 CRa* T

+(sz—£::2)—l( IDW|+ & |v%;)] dz .
0

Using inequalities (23) and (26) in the above inequality, we get

I (D2+a2 )3F1 (]2+a2)21 5
0 0 0

Also, from equation (22) and the fact that p, > 0, we obtain,

pati{ R, 1UTE B2dz 0R ' @%; 00 (34)
= S B B

0 0

Now if permissible, let
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R >R (1-T1a)
S B 0 2

Then, in that case, we derive from equation (22) and inequalities (27) — (34), that

T (M2 + a?)Ft R a?B 1 )
2 _ 2 o }- S wl|“dz <0
(2 — a?) {1+ —+ - } CEETTee Toaz)]ﬁ
0
(35)
which implies that
T (ﬂ2+a2)FT R' a’B 2
(72 —a?) {1+ _+ j—__ s 1 fiwizdz < o,
a 4 (m24+a?)(1-Toaz) O
and thus we necessarily have
. — 274 Ft 256m®
R > (L= Toa) (277 (3 4 Ty 4 [T 2507
B 4 o o 27
3 4
2+c12) (2+a2) 274
since the minimum values of and for a> > 0 are A and
a a
256 ¢ ‘
respectively .
27
Hence, if

R < (1 —Toaz) (277" (1 4 Ty 4 Fr256m°,
B 4 o o 27

then we must have

R <Rra—T1a).
S B 0 2

and this completes the proof of the theorem.
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Theorem 1 implies from the physical point of view that the modified
thermosolutal convection of the Veronis' type in the Rivlin-Ericksen elastico-
viscous fluid cannot manifest as an oscillatory motions of growing amplitude in an

initially bottom heavy configuration if

4 6
R < (1 —Toaz) {2771 a+5 +E 256w )
S B 4 c o 27

Further this result is uniformly valid for the quite general nature of the
bounding surfaces.
SPECIAL CASE 1: For the case when F = 0 (Newtonian Fluid) Theorem 1 can be

restated as:

Theorem 1: IfR >0, Rs >0, p:> 0, pi ¥ 0 and,

1—Toaz) 27T
SS( ] ){

4 T
Z (1 +;)}

then a necessary condition for the existence of a non-trivial solution (w, [, [, p) of

equations (1) — (3) together with boundary conditions (4) — (7) is that:

R < T(1 - Toa).
S B

Theorem 2: If R<0,Rs<0,F>0,p:>0,pi¥0, @(107@,)>1

F 25616

' 4
RI<_ B ¢2™a+bhy
T (A—=Toaz) 4 o o 27

}

then a necessary condition for the existence of a non-trivial solution (w, [, [I, p) of

equation (9) — (11) together with boundary conditions (12)-(15) is that

R | < —IRIB
T (1—Toaz)
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Proof: Putting Rt = — | R’ |, R§=—|R{| in equation (9) and proceeding exactly
as in Theorem 1, the desired result follows.

From the physical point of view, Theorem 2 implies that the modified
thermosolutal convection of the Stern's type in the Rivlin-Ericksen elastico-viscous
fluid cannot manifest as an oscillatory motions of growing amplitude in an initially

top heavy configuration if

4 6
IR'| < B {2771 (1+i)+5256n

T (A—=Toaz) 4 o o 27

}

Further this result is uniformly valid for the quite general nature of the bounding

surfaces.

SPECIAL CASE 2: For the case when F = 0 (Newtonian Fluid) Theorem 2 can be

restated as:

Theorem 2: If R< 0, Rs< 0, p>0, pi [J 0 and

{277‘[4 1)}
R' S 1 + - )
IRal (1—Toaz) 4 ( o

then a necessary condition for the existence of a non-trivial solution (w, 1,1, p) of

equations (9) — (11) together with boundary conditions (12) — (15) is that
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