A NOTE ON sg* CONTINUOUS MAPPINGS IN SOFT TOPOLOGICAL SPACES

V. Ramya and R. Asokan

School of Mathematics, Madurai Kamaraj University, Madurai, Tamil Nadu, India

Abstract: The aim of this paper is to introduce sg*closed set in a Soft topological space and to study some of its properties. Then sg* continuous mapping and irresolute mapping are introduced and some of its properties are studied. The concept sg* open, sg* closed mappings and sg*homeomorphism are introduced and their properties are studied.

Key-Words: sg* continuous mapping, irresolute mapping, sg* homeomorphism

Subject Classification: 2010MSC: 54C08, 54C10

1. INTRODUCTION

The theory of soft sets gives a vital mathematical tool for handling uncertainties and vague concepts. In the year 1999, Molodtsov[1] initiated the study of soft sets. Soft set theory has been applied in several directions. Following this Maji, Biswas, and Roy[7,8] discussed soft set theoretical operations and gave an application of soft set theory to a decision making problem. Recently Muhammad Shabir and Munazza Naz introduced the notion of soft topology[10] and established that every soft topology induces a collection of topologies called the parametrized family of topologies induced by the soft topology. Several mathematicians published papers on applications of soft sets and soft topology [1,2,6,11,12,1]. Soft sets and soft topology have applications to data mining, image processing, decision making problems, spatial modeling and neural patterns[3,4,5,7]. In this paper, the concept sg* closed set is introduced in soft topological space and the concept of sg* continuous mapping and sg* irresolute mapping are introduced and some of their properties are studied. Further the concept sg* open, sg* closed mappings and sg*homeomorphism are introduced and some of their basic soft topological properties are investigated. Finally the concept of slightly sg* continuous mapping is introduced and studied some of its basic concepts.

2. PRELIMINARIES

2.1 Definition A soft set (A, E) is called sg* closed in a soft topological space $(X, \tilde{\tau} E)$ of $cl(A, E) \cong (U, E)$ whenever $(A, E) \cong (U, E)$ and (U, E) is soft g open in \tilde{X} .

2.2.1 Let
$$X = \{a_1, a_2, a_3\}, E = \{b_1, b_2\}$$
 and

$$\tilde{\tau} = {\{\widetilde{\emptyset}, \widetilde{X}, (A_1, E), (A_2, E), (A_3, E), (A_4, E), (A_5, E), (A_6, E), (A_7, E)\}}$$
 where

$$(A_1, E) = \{(b_1, \{a_2\}), (b_2, \{a_1\}), (A_2, E) = \{(b_1, \{a_2\}), (b_2, X)\}$$

$$(A_3, E) = \{(b_1, \{a_2, a_3\}), (b_2, \{a_2, a_3\})\}, (A_4, E) = \{(b_1, \{a_1, a_3\}), (b_2, X)\},$$

$$(A_5, E) = \{(b_1, \emptyset)\{b_2, \{a_1\}\})$$
 $(A_6, E) = \{(b_1, \emptyset)\{b_2, \{a_2, a_3\}\})$ and

$$(A_7, E) = \{(b_1, \emptyset), (b_2, X)\}.$$

Clearly
$$(A, E) = \{(b_1, \{a_1, a_3\})(b_2, \{a_3\})\}\$$
 is sg* closed in $(X, \tilde{\tau} E)$.

since for (A,E) there exists a soft g open set $(U,E) = \{(b_1,\{a_1,a_3\},\{b_2,\{a_2,a_3\})\})$ such that $cl(A,E) \cong (U,E)$.

2.1 Theorem

Every soft closed set is sg* closed in a soft topological space $(X, \tilde{\tau} E)$.

3. sg* CONTINUOUS MAPPINGS

3.1 Definition

A soft mapping $f: \tilde{X} \to \tilde{Y}$ is called sg* continuous if $f^1(U, E)$ is sg* closed in $(X, \tilde{\tau}, E)$ for every soft closed set (U, E) of $(X, \tilde{\omega}, E)$.

3.2. Theorem

Let $f: \tilde{X} \to \tilde{Y}$ be a soft mapping from soft topological space $(X, \tilde{\tau}, E)$ into a soft topological space $(X, \tilde{\tau}, E)$. Then the following statements are equivalent.

- i) $f: \tilde{X} \to \tilde{Y}$ is sg* continuous.
- ii) The inverse image of each soft open set in \tilde{Y} is sg* open in \tilde{Y} .
- iii) For each soft subset $(A, E) \in (Y, \widetilde{\omega}, E) sg^* cl(f^{-1}(A, E)) \subseteq f^{-1} cl(A, E)$.

i v) For each soft subset $(B, E) \in (X, \tilde{\tau}, E) f(sg^*cl(B, E)) \subseteq cl(f(B, E))$.

Proof (i) \rightarrow (ii) follows from 3.1 Definition.

(i)→(iii)

Let (A,E) be a soft subset of $(Y,\widetilde{\omega},E)$. By 3.2.1 Definition f^{-1} cl(A,E) is a sg* closed set containing f^{-1} (A,E) and $sg^*cl(f^{-1}(A,E)) \subseteq f^{-1}$ cl(A,E).

(iii)→(iv)

Let
$$(B, E) \in (Y, \tilde{\tau}, E)$$
, then $f(B, E) \in (Y, \tilde{\omega}, E)$ Hence from (iii) $sg^*cl(f^{-1}(f(B, E)) \subseteq f^{-1}(cl(A, E)))$. Therefore $f(sg^*cl(B, E)) \subseteq clf(B, E)$.

$(iv) \rightarrow (i)$

Let (U,E) be a soft closed set in \tilde{Y} . Then by (iv)

$$f\left(sg^*cl\left(f^{-1}(U,E)\right)\right) \cong cl(f(f^{-1}(U,E))$$
. Hence $sg^*cl\left(f^{-1}(U,E)\cong f^{-1}(U,E)\right)$. Therefore $f^{-1}(U,E)$ is a sg^* closed set in \tilde{X} .

3.3 Theorem

Let $f: \tilde{X} \to \tilde{Y}$ be a soft continuous mapping from \tilde{X} into \tilde{Y} . Then it is sg* continuous.

Proof

(i) \rightarrow (ii) follows from 3.1 Definition.

(i)→(iii)

Let (A,E) be a soft subset of $(Y, \widetilde{\omega}, E)$. By 3.1 Definition $f^{-1}(cl(A, E))$ is a sg* closed set containing $f^{-1}(A, E)$ and $sg^*cl(f^{-1}(A, E)) \subseteq f^{-,\{1\}}(cl(A, E))$.

$(iii) \rightarrow (iv)$

Let $(B, E) \subseteq (X, \tilde{\tau}, E)$. Then $f(B, E) \in (Y, \tilde{\omega}, E)$. Hence from (iii) $sg^*cl(f^{-1}(f(B, E)))$ $\subseteq f^{-1}(clf(B, E))$. Therefore $f(sg^*cl(B, E)) \subseteq clf(B, E)$.

$(iv) \rightarrow (i)$

Let (U,E) be a soft closed set in \tilde{Y} . Then by (iv)

Volume 7, Issue 2, 2021 PAGE NO: 20

$$f(sg^*cl(f^{-1}(U,E))) \cong cl(f(f^{-1}(U,E)))$$
. Hence $sg^*cl(f^{-1}(U,E)) \cong f(U,E)$.

Therefore $f^{-1}(U, E)$ is a sg* closed set in \tilde{X} .

3.4 Theorem

Let $f: \tilde{X} \longrightarrow \tilde{Y}$ be a soft continuous mapping from \tilde{X} into \tilde{Y} . Then it is sg* continuous.

Proof

Let (A,E) be any soft closed set in \tilde{Y} . Then $f^{-1}(A,E)$ is soft closed in \tilde{X} . Therefore by 2.1 Theorem, $f^{-1}(A,E)$ is sg* closed in \tilde{X} .

3.5 Example

The following example shows that the converse of the above 3.2.2 Theorem need not be true.

Let
$$X = \{a_1, a_2, a_3\}, Y = \{a_1, a_2, a_3\}, E = \{b_1, b_2\}$$
 and

$$\tilde{\tau}_1 = {\{\tilde{\emptyset}, \tilde{X}, (B_1, E), (B_2, E), (B_3, E), (B_4, E), (B_5, E)\}}$$

 $\widetilde{\tau}_1 = \{\widetilde{\emptyset}, \widetilde{X}, (A_1, E), (A_2, E), (A_3, E), (A_4, E), (A_5, E), (A_6, E)\}$ be two soft topological spaces over X and Y respectively. Then $(B_1, E), (B_2, E), (B_3, E), (B_4, E), (B_5, E)$ are soft sets over X and $(A_1, E), (A_2, E), (A_3, E), (A_4, E), (A_5, E)$ are soft sets over Y defined as follows:

$$(A_1, E) = \{(b_1, \{a_2, a_3\}), (b_2, \{a_1, a_3\})\},$$
 $(A_2, E) = \{(b_1, \{a_3\}), (b_2, \{a_1\})\},$

$$(A_3, E) = \{(b_1, \{a_2\}), (b_2, \{a_3\})\}, \qquad (A_4, E) = \{(b_1, \{a_3\}), (b_2, \emptyset)\},\$$

$$(A_5, E) = \{(b_1, X), (b_2, \{a_1, a_3\})\}, \qquad (A_6, E) = \{(b_1, \{a_2, a_3\}), (b_2, \{a_3\})\}, (b_2, \{a_3\})\}, (b_3, \{a_1, a_2\}), (b_3, \{a_1, a_3\}), (b_3, \{a_1, a_2\}), (b_3, \{a_1, a_3\}), ($$

$$(B_1, E) = \{(b_1, \{a_2\}), (b_2, \{a_1\})\}$$

$$(B_2, E) = \{(b_1, \{a_3\}), (b_2, \{a_1, a_3\})\}, (b_2, \{a_1, a_3\})\}, (b_3, \{a_1, a_3\}), (b_3, \{a_1, a_3\})\}, (b_3, \{a_1, a_3\}), (b_3, \{a_1, a_3$$

$$(B_3, E) = \{(b_1, \{a_2, a_3\}), (b_2, \{a_1, a_2\})\}, \qquad (B_4, E) = \{(b_1, X), (b_2, \{a_1, a_2\})\},\$$

and
$$(B_5, E) = \{(b_1, \emptyset), (b_2, \{a_1\})\}.$$

Let $f: \tilde{X} \to \tilde{Y}$ be a soft mapping defined by $f(a_1) = a_1$, $f(a_2) = a_3$, and $f(a_3) = a_2$. Then f is sg* continuous map but not soft continuous. Since $f^{-1}(A_1, E) = \{(b_1, \{a_2, a_3\}), (b_2, \{a_1, a_2, \})\},$

$$f^{-1}(A_2,E) = \{(b_1,\{a_2\}),(b_2,\{a_1\})\}, \qquad \qquad f^{-1}(A_3,E) = \{(b_1,\{a_3\}),(b_2,\{a_2\})\},$$

$$f^{-1}(A_4, E) = \{(b_1, \{a_2\}), (b_2, \emptyset)\}, \qquad f^{-1}(A_5, E) = \{(b_1, X), (b_2, \{a_1, a_2\})\},$$

$$f^{-1}(A_6, E) = \{(b_1, \{a_2, a_3\}), (b_2, \{a_2\})\} \text{ are sg* open sets in } \widetilde{\tau_1} \text{ but}$$

$$f^{-1}(A_3, E), f^{-1}(A_4, E), f^{-1}(A_5, E), f^{-1}(A_6, E) \text{ are not soft open sets in } \widetilde{\tau_1}.$$

3.6 Theorem

If $f: \tilde{X} \to \tilde{Y}$ is a sg* continuous mapping from \tilde{X} into \tilde{Y} then f is soft g continuous.

Proof Let (A, E) be any soft closed set in \tilde{Y} . Then $f^{-1}(A, E)$ is sg* closed in \tilde{X} . Therefore by 2.1 Theorem $f^{-1}(A, E)$ is soft g closed in \tilde{X} .

3.7 Definition

A soft mapping $f: \tilde{X} \to \tilde{Y}$ called sg* irresolute if $f^{-1}(U, E)$ is sg* closed in \tilde{X} for every sg* closed set of $(Y, \tilde{\omega}, E)$.

3.8 Remark

A soft mapping $f: \tilde{X} \to \tilde{Y}$ is sg* irresolute if and only if the inverse image of every sg* open set in $(Y, \tilde{\omega}, E)$ is sg* open in \tilde{X} .

- **3.9 Theorem** If $f: \tilde{X} \to \tilde{Y}$ and $h: \tilde{Y} \to \tilde{Z}$ are any two soft mappings then
 - i) $h \circ g$ is sg^* continuous if h is soft continuous and f is sg^* continuous.
 - ii) $h \circ g$ is sg^* continuous if h is sg^* continuous and g is sg^* irresolute.
 - iii) $h \circ g$ is sg* irresolute if both g and h are sg* irresolute.

Proof

- (i) Let (U,E) be a soft closed set in \tilde{Z} . Then $h^{-1}(U,E)$ is soft closed in \tilde{Y} and $g^{-1}(h^{-1}(U,E)) = h^o(g)(U,E)$ is sg* closed in \tilde{X} .
- (ii) Let (U,E) be a soft closed set in \tilde{Z} . Then $h^{-1}(U,E)$ is sg* closed in \tilde{Y} and $g^{-1}(h^{-1}(U,E)) = h^o(g)(U,E)$ is sg* closed in \tilde{X} .
- (iii) Let (U,E) be a sg* closed set in \tilde{Z} . Then $h^{-1}(U,E)$ is sg* closed in \tilde{Y} and $g^{-1}(h^{-1}(U,E)) = h^o(g)(U,E)$ is sg* closed in \tilde{X} .

Volume 7, Issue 2, 2021 PAGE NO: 22

3.10 Theorem

A soft mapping $f: \tilde{X} \to \tilde{Y}$ is sg* irresolute if and only if for every soft subset (U,E) of $\tilde{X}, g(sg^* cl(U,E)) \cong sg^* cl(g(U,E))$.

Proof Let g be a sg* irresolute mapping and (U,E) be a soft subset in \tilde{X} . Then $sg^* cl(g(U,E))$ is sg* closed set in \tilde{Y} . Hence $g^{-1}(sg^* cl(g(U,E)))$ is sg* closed in \tilde{X} and $(U,E) \subseteq g^{-1}(g(U,E)) \subseteq g^{-1}(sg^* cl(g(U,E)))$.

Therefore

$$sg^* cl(U,E) \cong g^{-1}(sg^* cl(g(U,E)))$$
, hence $g(sg^* cl(U,E)) \cong g^{-1}(sg^* cl(g(U,E)))$.

Conversely, suppose that (U,E) is sg* closed in \tilde{Y} .

Therefore

$$g(sg^* cl(g^{-1}(U,E))) \cong (sg^* cl(g(g^{-1}(U,E))) = sg^* cl(U,E) = (U,E)$$
. Hence $sg^* cl(g^{-1}(U,E)) \cong g^{-1}(U,E)$.

4. sg* HOMEOMORPHISMS

4.1 Definition

A soft mapping $f: \tilde{X} \to \tilde{Y}$ is called sg* open if g(U, E) of each soft open set (U, E) in $(X, \tilde{\tau}, E)$ is sg* open in $(Y, \tilde{\omega}, E)$.

4.2 Definition

A soft mapping $f: \tilde{X} \to \tilde{Y}$ is called sg* closed if g(U, E) of each soft closed set (U, E) in $(X, \tilde{\tau}, E)$ is sg* closed in $(Y, \tilde{\omega}, E)$.

4.3 Theorem

Let the soft mappings $f: \tilde{X} \to \tilde{Y}$ and $g: \tilde{Y} \to \tilde{Z}$ be bijective. If $g \circ f: \tilde{X} \to \tilde{Z}$ is soft continuous and $f: \tilde{X} \to \tilde{Y}$ is soft continuous and $f: \tilde{X} \to \tilde{Y}$ is sg* closed then $g: \tilde{Y} \to \tilde{Z}$ is sg* continuous.

Proof

Let (U,E) be the soft closed set in \tilde{Z} . Since $g \circ f : \tilde{X} \to \tilde{Z}$ is soft continuous, then $f^{-1}\left(g^{-1}(U,E)\right) = (g \circ f)^{-1}(U,E)$ is soft closed set in \tilde{X} . Since $f : \tilde{X} \to \tilde{Y}$ is sg* closed, then $f\left(f^{-1}\left(g^{-1}(U,E)\right)\right) = g^{-1}\left(U,E\right)$ is sg* closed set in \tilde{Y} .

4.5 Theorem

A soft mapping $f: \tilde{X} \to \tilde{Y}$ is a sg* open iff if $f(int(B, U)) \subseteq sg^*int(f(B, E))$ for every soft subset (B, E) of \tilde{X} .

Proof

Let $f: \tilde{X} \to \tilde{Y}$ be sg* open and (B,E) be a soft subset of \tilde{X} , then int(B,U) is a soft open set in \tilde{X} . Hence $f(int(B,E)) = sg^*int(f(int(B,E)))$.

Conversely, Let (G,E) be a soft open set in \widetilde{X} . $f(G,E) = f(int(G,E)) \subseteq sg^*int(f(G,E))$, which implies $f(G,E) \subseteq sg^*int(f(G,E))$. Hence f(G,E) is a sg* open in \widetilde{Y} .

4.6 Definition

If a soft mapping $f: \tilde{X} \to \tilde{Y}$ is sg* continuous bijective and f^{-1} is sg* continuous then f is said to be sg* homeomorphism from $(X, \tilde{\tau}, E)$ in to $(Y, \tilde{\omega}, E)$.

4.7 Theorem

Let $f: \tilde{X} \to \tilde{Y}$ be the soft bijective mapping. Then the following statements are equivalent: . Since f is sg* open map,

- i) $f^{-1}: \tilde{Y} \to \tilde{X}$ is sg* continuous.
- ii) f is sg* open.
- iii) f is sg* closed.

Proof

(i)—(ii) Let (U,E) be any soft open set in \tilde{X} . Since $f^{-1}:\tilde{Y}\to \tilde{X}$ is sg* continuous, therefore $(f^{-1})^{-1}(U,E)=f(U,E)$ is sg* open in \tilde{Y} .

Volume 7, Issue 2, 2021 PAGE NO: 24

(ii) \rightarrow (iii) Let (B,E) be any soft closed set in \tilde{X} , then $\tilde{X} - (B,E)$ is soft open set in \tilde{X} . Since f is sg* open map, $f(\tilde{X} - (B,E))$ is sg* open in \tilde{Y} . But $f(\tilde{X} - (B,E)) = \tilde{Y} - f(B,E)$, implies f(B,E) is sg* closed in \tilde{Y} .

(iii) \rightarrow (i) Let (B,E) be any soft closed set in \tilde{X} . Then $(f^{-1})^{-1}(U,E) = f(U,E)$ is sg* closed in \tilde{Y} . Therefore $f^{-1}: \tilde{Y} \rightarrow \tilde{X}$ is sg* continuous.

References

- [1] D. Molodtsov, Soft set theory-first results, Math, Appl. 37 (1999),(19-31).
- [2] P.K. Maji, R. Biswas and A.R. Roy, Soft set theory, Comput.Math. Appl, 45 (2003),555-562.
- [3] M. Shabir and M.Naz, On soft topological spaces. Comput, Math. Appl, 61 (2011) 1786 1799.
- [4] A. Aygünoğlu and H.Aygün, Some notes on Soft topological spaces. Neural Comput and Applic., 21 (1) (2012), 113-119
- [5] W.K Min, A note on soft topological spaces, Comput. Math.Appl., 62 (2011), 3524-3528.
- [6] I,Zorlutuna, M. Akdag, W.K. Min and S. Atmaca, Remarks on soft topological spaces, Ann, Fuzzy Math Inform., 3 (2) (2012), 171 185.
- [7] S Hussian and B. Ahmad, Some properties of soft topological spaces, Comput. Math. Appl., 62 (2011) 4058 -4067.
- [8] B.Pazar Varol and H. Aygün, On soft Hausdorff spaces, Ann. Of Fuzzy Math. Inform., 5 (1) (2013), 15 24.
- [9] B.V.S.T. Sai and V.Srinivasa Kumar, On soft semi-separability, Int.Journalof Math. Analysis, 7 (54) (2013), 2663 2669.
- [10] N.Levine, Generalized closed sets in topology, Rend. Cric. Mat. Palermo, 19 (2) (1970), 89 -96.
- [11] K Kannan, Soft generalized closed sets in soft topological Spaces, Journal of Theoretical And Appl. Inform. Technology, 37 (1) (2012), 17 -21.
- [12] S. Alkhazaleh, A. R. Saleh and A.N. Hassan, "Soft multi sets theory", Applied Mathematical Sciences, 5 (72) (2011), 3561 3573.