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Abstract:

Domination is an interesting research area in graph theory. Various domination parameters have been
dicussed by many authors. In this paper, we have found the general formula for the Kronecker product of cycles

of even length with some of its transformation graphs.
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I. INTRODUCTION

Graph theory is one of the florescent area to find the solution for some unsolved problems in real life
which are motivated by objects and relation between them. A graph G = (V,E ), where V is a finite set of
elements called vertices and E is a set of unordered pairs of distinct vertices of G called edges. The
degree of a vertex v in G is the number of edges incident on it.

II. PRELIMINARIES
Definition: 2.1
A graph G is said to be bipartite if the vertex set of V(G) can be partitioned in to two
subsets Xand Y such that every edge of G has one end in X and the otherend in Y. A
bipartite graph G with | X | = mand | Y | = n is said to be complete if every element in
one partition is adjacent with all elements of the other partition and is denoted by K, ,,.
The graph K; , is called a star graph.
Definition: 2.2
A set D € V is a dominating set of G if every vertex ve V- D is adjacent to at least one
vertex of D; A dominating set D is minimum if there is no dominating set D’ with
| D'| <| D |. The cardinality of a minimum dominating set is called the domination
number denoted by 1 G) and the minimum dominating set D of G is also called a y — set.
Definition:2.3
If Giand G, are two graphs with vertex sets V; and V, respectively then their product
graph is a graph denoted by G;(K)G, with its vertex set as V; X V, where u v, is
adjacent with u,v, if and only if w,u, € E;and v,v, € E,is called the Kronecker
product of graphs.
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Definition:2.4
LetG = (V(G), E (G)) be a graph and x, y, z be three variables taking values + or -.
The transformation graph G*# is the graph having V(G) U E(G) as the vertex set
and for o<, § € V(G) U E(G),x and p are adjacent in G*>* if and only if one of the
following holds:
(i) x, B € V(G).x and B are adjacentin G if x=+; < and B are not
adjacentin G if x =-.
(ii) «, B € E(G).« and B are adjacentin G if y=+; « and B are not
adjacentin G ify=-.
(iii)xe V(G), B € E(G).x and B are incidenttin G ifz=+; < and B
are not incident in G if z=- .

1. MAIN RESULTS
Result :3.1
Let G = C,, be a cycle of order n and G** be a transformation of G with 2n vertices .

Then
i rGH=|F
(i) y(@*T) =2
F2 if n =34
i)y =4[5 +2 if n=6912, ..
Jg] +1 otherwise
. e 2 ifn=3
) v )={[§]+1 ifn>3
V) y(@)=
. e (2 ifn=4,5
i) y(@ )_{ 3 ifn=3andn>5
o v
(vii) y(6) =] > I l.:fiafiél
Theorem : 3.2

Let G be a cycle of order n which is even and n > 4 and G**~ be the transformation
graph of G. Then y(G (K)G**™) =6 E]

Proof :
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Let G = C,,,n> 4 be a even order cycle .
Let G**~ be the transformation of G and (G**7) = {u;,e;/ 1 <j<m} [V(G**7)| = 2m.
Let us denote G* = G(K)G**~.
[V(G*)| = 2mn.
The adjacency in V(G™) is as follows:
N(u;vy) = {upvy , ugvp} U {uge;/ 2<j<m-1}
N(u;e;) = {ugey, ugey,} U {u,v;/ 3 <j<m}
N(u;vp) = {ugvy , U V13 U {uge;/ 1<j<m-2}
N(u;ey,) = {uge;, ugepm_13 U {uev;/2<j<m-1},
N(uivj) = {WgVj_1 , U Vi1 } U {ugep/ 1<h<m,h#j—1,j}
N(uiej) = {ukej_l,ukej+1} U{ugvp/ 1<h<m,h+j,j+1}
if=1,k=2n andifi=n,k=1n-1
andforall2<i<n—-1,k=i-1,i+1and1<j<m.
Therefore, d(uivj) = d(uie]-) =2n forall1<i<n,1<j<m
Let D be a dominationg set for G*.
D = (a,b)/ aeS;, besS,,whereS; and S, such that

Sl = {{uxvj'uxvj+1'uxej—1}l {uxvjruxvj+1r Ux€jt1 } ’ {uxeji Ux€j+1, uxvj}r
{uxejf uxej+1r uxvj+2}i {uxvjf uxvj+3i uxej+1}i {uxeji uxej+3i uxvj+2}i
{uxvj» UxVm—-2, uxem—l}: {uxej: UxCm—2, uxvm}}
S2 = {{uyvj' Uy Uy, Uy €j-a fy (V) Uy Vs, Uy €4 3o {0 Uy 1, Uy 1,
{uyep uyejin wyviab {uy vy uyvjas, uyan ) {uy €, Uy €08, uy vy},
{uyvj, Uy V-2, Uy em_l}, {uy €j, UyCm_3, uyvm}}
135,...,7 ,if > isodd
forall 2<j<m-1,x=2p—-1,y=2p, p= s
1,3,5, w5  if 7 is even
By the selection of S* and S$** , each suffix x dominate exactly two partitions.
We have 2mn vertices in G* and degree of each vertex is 2n.
For, N(uivj) U N(uivjﬂ) = {UVj_1, U Vj, U Vj 1, Uk Vjy2} U
{Uker, Uges, oo, Uk€j_1, Ug€ji1, wovr UkCm—1, U }
N(uiej_l) = {Uk V1, U V2, v, U Vjz, U Vj g1, oon s UV} U {Ug€j 2, Upe;}
N(uiejH) = {Uk V1, U Vg, v, UV, U Vjgz, oo, WU U {Ugc€), Ugc€j4 2}
ifi=1k=2nandifi=n,k=1n-1
andforall2<i<n-1,k=i-1l,i+l1and2<j<m-1.

Since {w;v;,u;v;4,} dominate 8 + 2(m — 1) vertices , it is must to choose one more
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vertex .
Hence, N(uivj) U N(uivjﬂ) U N(uiej_l) = {wevj, ukej/k=i—1,i+1}
N(uivj) U N(uivjﬂ) U N(uiejﬂ) = {ugvj, ugej/k=i—-1,i+1},
1<j<mforafixedi,2<i<n-1
andifi=1,k=2n andifi=nthenk=1,n-1.
= {u;Vj, U;Vj11, U €41} for all i and j , it is one of the minimum dominating set for G.

= D is the minimum dominating set and the domination number
16 =2(31])

Theorem : 3.3
Let G be the Kronecker product of G; and G, where G; = C,, ,niseven,n > 5
and G, = G," 7. Theny(G) =n E]
Proof :
Let G, = C,,n > 5 be a graph of order even and G, = G, '~ be the transformation
graph of G;.
Letus denote V(G,) = {w;/1<i<n}
In G, , the adjacency of v; is { vj_1 Vj41, €j_1,€j41},1<j<n
Since the variable ‘y’ is *-”, each e; is adjacent with all e,/ 1 < k < n except
ej_; and e;,; and also adjacent with v; and v;, .
Let G = G,(K)G, ,V(G) = {wyv;,uej/1<i<n,1<j<n}; |[V(G)| = 2n°
N(uie;) = {uj_1ex/ 1<k <n,k#j—1jandj+1} U
{ujj1ex/ 1<k<nk#j—1,jandj+1} U
(Ui 1V, U1V, Ui V), U1 Vg ) } 1<ij=sn.
Nuv)) = {wi_1Vn, Uip1Vn Ui1€k Uigr€r [ h=j—1j+ Lk=j-1j},
forall 1<i,j<n.
Hence, d(u;e;) = 2(n — 1), d(u;v;) =8, forall1<i,j <n.
In G, there are S* and S* having g sub partitions and each sub partition consists 2n
elements. Hence |S*| = |S**| = n?.
Also, elements from one sub partition of S* dominate exactly two sub partitions of S**.
"
2

Therefore, vertices from sub partitions of S* dominate all elements of S**.

By the adjacency of e; € V(G,) , the set of vertices {e;/ j isodd ,1 < j <n } dominate all
{v;/ 1 <j <n}independently.
Similarly, {e;/ j is even,1 < j <n } dominate all {v;/ 1 <j <n} independently.
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Also any pair of vertices {ej ,ek} eV(G,) , k#j—-2j—1,j+1andj+2 1<j<n
dominate all {e;/ 1<j<n }.
Letus choose D; € S*and D, © §*
D, = {{u2i—1e1»u2i—1e3'u2i—135» o Ugi—1€n—1}, {Uzi-1€2, Uzi—1€4,Usi—1€6, ---'uZi—len}}
D, = {{u2ie1'u2ies'u2ies' o Ugien—1}, {Uzi€2, Usi€q, UniCs, -"ruZien}}
n-2 .,n.
1,35..,— if - iseven
R 2 2
L= n P
1,3,5,...,5 if S Is odd
Letx € D,,y €D,.
N(x) =S and N(y) = S*.
Hence, D = {(x,y)/ x € D;,y € D, }is a dominating set.
x consists of E] (g) elements and similarly y consists of E] (g) elements.
Since each element of D dominate all u;v; independently, D is the required minimum
dominating set for G.

=10 =2[](¢) =n

Result : 3.4
In the above theorem, if g 1s odd ,
N(ulej) = {Uxv), Uze;, UnVj, Unej} ;
N(un_lej) = {Un—2Vj , Up_2€j , UnVj, Une)}
N(uze]-) = {wv;,u €, u3vj, uze;} ;
N(unej) = {u1vj, U6, Up_1Vj, Up_1€;} ,1<j<n
{w e, u,_1€;} € S* dominate {u, v;,uye;} € S* twice.
{uzej, une;} € S™ dominate {u,v;,uye;} € S* twice.

Therefore, D does not dominate the sub partitions independently.

Result : 3.5
If G = C,,n iseven, then G~ and G** are isomorphic.

y G =y (6 =3

By the previous theorem, y (G(K)G™**) =y (G(K)GT™*) =n E]

Theorem: 3.6
Let G = G,(K)G," ™~ be the graph, G, = C, ,n>5,nis even. Theny (G) = 4 E]

Proof :
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Let G = G;(K)G, where G, = C,,n>5 ,nisevenand G, = G, .
V(G) ={u/1<i<n}
V(Gy) ={vj,ej/1<j<n}
V() = {wvj,uej/1<i<n,1<j<n}
The adjacency of V(G) as follows :
N(uvj) = {wi—1Vj-1, i1 Vj41, Ui41Vj—1, Ui41Vj41} U
{ui_1ep, vjz1€x/ 1<k<n,k#j—1landj},1<ij<n.
N(u;e;) = {Uj—1 Vg, Ui Vg / 1<k <n,k#jandj+1}U
{ui_1ex,ujr1€ex/ 1<k<n,k#j—1jandj+1},1<ij<n
d(w;vj) = 2n; d(ue;) = 4n — 10
Itis clear that d(w;v;) < d(w;e;) forall 1 <i,j <n.
Choose D; and D, such a way that,
D, = {uzi—lejfuzi—lek fuziej'uziek}
1,3,5,...,”—_2 if g is even

— > __ 2
Dy = {Upi1€), Ugip1€k ) Upir2€), Upjy2€k} , L = on . )
if S is odd

135,..,7
foralll1 <jk<n k#j—2,j—1,j+1andj+ 2.
We know that, [V (G)| = 2n?, |S*| = |S**| = n?.
Forall and j,d(u;e;) = 4n—10.
S* and S** have g sub partitions and each sub partition having 2n elements.
Elements of each sub partition of S* exactly dominate the elements in two sub partitions
of $**.

Choose a pair of vertices (u;ej, u;e,) suchthat k #j—2,j—1,j+1landj+2;1<j<n.
| j,ui+1€j}/1ﬁj,kﬁn.
IN(we;) N N(uep)| = 2(2n — 10).

|N(uiej) U N(uep)| = |N(uiej)| + |N(u;e)| — |N(uiej) N N(u;e;)

Then, N (uiej) UN(ue,) = {ui—1v, Ui—1€), U1V

=4n

Therefore , E] number of pair of selected vertices from S* dominate S™*.

In similar, E] number of pair of selected vertices u;e; € S™ dominate S™.
Hence, D; and D, are the required minimum dominating sets with
cardinality 4 E]

Hencey (G) = 4 E]

Corollary:3.7
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n-2 ..n .
1,3,5, o if 5 is even

If 2 is odd then for all i = n n ,
2 1,3,5, s if ; isodd
and1<jk<n k+#j—-2,j—1,j+1andj+2,
N(D,) = N(“zt—1ej) U N (uzi_q€) U N(uziej) U N (uzie) = V(G).
By the adjacency mentioned in Result : 3.4, the graph G in above theorem : 3.6
with all i, j, k,

[N Cuairep] + NGz sl = 2 ([7] (4n = 10) - 2n - 5))

|N(u2i_1ej) N N(uzl-_lek)| = g(Zn —10)

Hence, N(D,) = |N(u2i_1ej) U N (uy;_q€,) U N(uzl-ej) U N (uyep)|
= |N(u2i—1ej)| + N (uzi—iex)| + |N(u2i€j)| + N (uzier)l

_|N(u2i—1ej) N N(ug_1e)| — |N(u2iej) N N (uge)|

=4([5| 4n-10) - 2n - 5)) - 2(% (21 - 10))
—2n2 = [V(6)|.

Hence for both either % is odd or g iseven, y (G) =4 E]

Corollary : 3.8

Forany cycle G = C,, y(G*™ ™) =y(G~*7) = 2.

Clearly, G*~~ is isomorphic to G™* .

Therefore, for any cycle G; = C,, nis even, G = G,(K)G, is isomorphic to G =
G,(K)G; ,where G, =G "~ and G; =G~ .

=>y(G)=4E].

Theorem :3.9
Let G* be the Kronecker product of G and G~ where G = C,, , n is even and
n>5.Theny (G*) =8 E]
Proof:
Let G* = G(K)G~ ™%, G is an even order cycle, n > 5.
V()| =n; V(G D] =2n; V(G| = 2n?
The neighbors of V(G™) as follows:

N(uvj) = {Uuj_1€j_1,Ui—1€j, Ujy1€j_1, Uj41€} U

UiV, Ui v/ 1<k<n,k#j—1jandj+1},1<ij<n

N(uiej) = {ui—ﬂ’j;ui—1”j+1;ui+1”jrui+1vj+1:ui—1ek;ui+1ek/
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1<k<n,k#j—1jandj+1},1<ij<n

Foralliand , d(w;vj) = 2n—2; d(u;e;) = 2n — 2.
From the adjacency of V(G"), it is clear that each u;v; € S* is adjacent with 2(n — 3)
number of u, v, € S** and four number of u,e, € S™;
Similarly , each w;e; € S* is adjacent with 2(n — 3) number of uze, € ™ and four
number of u,v, € S, forall 1 <i,jk<n; k#j—1jandj+1.
Let us choose D; € S* and D, € S** such that

Dy = {{Uzi—1Vj, Upi—1Vie, Upi—1€j, Upi—1€xc}, {Upis1 V) Upis1 Vicr Ui 1€ Upi+1 €1} )

D, = {{uZivj'uZivk'uZiejluZiek}l {u2i+2vj:u2i+2vk:u2i+zej:u2i+zek}}
1,3,5, ,nT_Z if g is even
135,..,2  if Zisodd
Choose the pairs (Up;_1V;, Up;—1Vk) and (Uy;_q€j, Up;—1€y) such that
1<jk<n k#j—2j—1,j+1and;j+?2.
Every pair (Uy;_1Vj, Up;_1V)) € S* dominate 2(2n — 6) vertices of S** and
|N(u2i_1v]-) N N(uy_1v)| = 2n — 12.
Similarly,every pair (uy;_;ej,Up;i_1€x) € S* dominate 2(2n — 6) vertices of S and
|N(u2i_1ej) N N(uy_qe)| = 2n — 12.

Case : (i) If gis even

forall i = ,1<jk<nk#j-2,j—1j+1landj+2

Then the elements of each sub partition of S* is adjacent with the elements of exactly two
sub partitions of S**. §* and S** have g sub partitions.
Each sub partition having 2n elements.
|N(u2i—177j)| + [N (ugi v | + |N(u2i—1ej)| + [N (uzi—r€i)]
_[|N(u2i—177j) NN (uy_qvp)| + |N(u2i—1ej ) NN (uy_qe)|]
=4(2n—-6) —2(2n—12) = 4n
which is the total number of elements in two sub partitions.

So we need minimum 2 E] pair of vertices from S* to dominate all the vertices of S**.

In similar, 4 E] vertices from S** dominate all the vertices of S*.

Case : (ii) If gis odd

By the adjacency shown in Result : 3.4 , vertices {Up;_1V}, Up;—1Vk, Upi—1€j, Upi—1€)}
chosen from E] sub partitions dominate 2 (E] 22n—6) — (2n— 6)) - % (2n —12)

vertices of §**
= |N (u2i—1vj) U N(uzl-_lvk) UN (U,zl'_lej) UN (uzl-_lej)l = |S**|
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Similar number of vertices chosen from S** dominate S* with cardinality 4 E]

From both the cases ,
D ={(a,b)/ a€ Dy,b € D, } is the required minimum dominating set for G*

— (G = 8[%].

IV.CONCLUSION
In this paper , we have discussed and derived the general formula for even cycle graph G
with GT~7,GY"*,G~~t and G**~. Also some results were discussed.
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